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ACTIVITY RECOGNITION IN
MULTI-ENTITY ENVIRONMENTS

RELATED APPLICATION

This application claims the benefit of U.S. Provisional
Application No. 61/503,996, filed Jul. 1, 2011, which is
hereby incorporated by reference.

BACKGROUND

Smart environments (e.g., homes or other environments
fitted with a plurality of sensors) show great promise for a
variety of uses including, for example, medical monitoring,
energy efficiency, and ubiquitous computing applications.
Activity recognition, for example, is possible within a smart
environment based on various sensor readings. However,
when multiple individuals are active within a smart envi-
ronment, activity recognition is complicated due to the
possible detection of sensor readings caused by each of two
or more different individuals.

SUMMARY

In a smart environment (e.g., a home or other environment
fitted with a plurality of sensors) equipped with non-obtru-
sive sensors, multiple residents may be identified and loca-
tions of the multiple residents may be tracked. Particular
residents may be identified based on behaviometrics data, a
naive Bayes classifier, and/or a hidden Markov model.
Furthermore, locations of particular residents may be
tracked according to a graph and rule-based entity detector,
a particle filter-based entity detector, or a Bayesian updating
graph-based entity detector.

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter. The
various features described herein may, for instance, refer to
device(s), system(s), method(s), and/or computer-readable
instructions as permitted by the context above and through-
out the document.

BRIEF DESCRIPTION OF THE DRAWINGS

The Detailed Description below is described with refer-
ence to the accompanying figures. In the figures, the left-
most digit(s) of a reference number identifies the figure in
which the reference number first appears. The same numbers
are used throughout the drawings to reference like features
and components.

FIG. 1 is a pictorial diagram of two example smart
environments.

FIG. 2 is a pictorial diagram of an example graphs
implemented in two example smart environments to support
a graph and rule-based entity detector.

FIG. 3 is a model diagram of an example hidden Markov
model for learning resident identities.

FIG. 4 is a block diagram illustrating select components
of an example computing device implemented to support
entity detection, entity tracking, entity identification, and
activity recognition within a smart environment.

FIG. 5 is a flow diagram of an example process for
utilizing a graph and rule-based entity detector.
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FIG. 6 is a flow diagram of an example process for
utilizing a Bayesian updating graph-based entity detector.

DETAILED DESCRIPTION

Smart environments include homes, apartments, work-
places, and other types of spaces that are equipped with any
of'a variety of types of sensors, controllers, and a computer-
driven decision making process. Such smart environments
enable ubiquitous computing applications including, for
example, applications to support medical monitoring,
energy efficiency, assistance for disabled individuals, moni-
toring of aging individuals, or any of a wide range of
medical, social, or ecological issues. The types of sensors
that may be employed to establish a smart environment may
include, for example, wearable sensors that are attached to
a particular user, cameras, microphones, or less obtrusive
sensors (e.g., motion sensors) that are placed at various
locations within the environment. Many individuals do not
like the idea of having to wear a sensor during daily
activities. Furthermore, relying on wearable sensors may
lead to less data or unreliable collection of data, for example,
if a user forgets to attach a sensor to themselves. Similarly,
many individuals are not interested in living in an environ-
ment that is equipped with cameras and microphones to
track their activities.

While wearable sensors are less than desirable due to the
reasons stated above, smart environments that utilize less
obtrusive sensors pose challenges as well. For example,
because wearable sensors are attached to a particular indi-
vidual, any readings from a particular wearable sensor can
easily be attributed to the particular individual. In contrast,
non-wearable sensors that are located throughout an envi-
ronment may detect activity, but attributing the activity to a
particular individual may be a challenge, for example, if
multiple individuals are within the environment when the
activity is detected. Furthermore, while many sensors within
a smart environment may be positioned to detect activity by
human beings within the environment, movement of other
entities such as pets within the environment may also be
detected by the sensors.

This Detailed Description describes tools to address chal-
lenges of identifying and tracking multiple residents within
a smart environment in which passive environmental sensors
(e.g., motion detectors) are implemented. The tools
described herein include algorithms to estimate the number
of individuals in the environment, algorithms to track the
individuals, and ways to use the gathered information to
recognize activities of particular individuals or entities
amidst a multi-resident setting.

Example Environment

FIG. 1 illustrates two example implementation environ-
ments, each including a smart environment. Example imple-
mentation environment 100 includes smart environment
102, which includes various sensors. In the illustrated
example, the sensors include motion sensors 104, light
sensors 106, and/or controllers 108. Percepts are gathered by
the various sensors and transmitted to a computing device
110, for example, over a network 112. In response, data may
be sent from computing device 110, over network 112, to
one or more controllers 108. The network 112 may include
any combination of wired and/or wireless networks. By way
of example, the network 112 may include one or more
personal area networks (PANs), home area networks
(HANs), local area networks (LANs), and/or wide area
networks (WANS).
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Example implementation environment 114 includes smart
environment 116, which also includes various sensors. In the
illustrated example, the sensors include motion sensors 118,
light sensors 120, and/or controllers 122.

Implementation environments 100 and 114 describe sev-
eral example configurations of smart environments using
various sensors. However, in other examples, other combi-
nations of these and other sensors may be used to implement
a smart environment. Some other passive sensors that could
be used to implement smart environments include, for
example, temperature sensors (e.g., infrared sensors to
detect body heat), sound sensors, proximity sensors, or the
like.

Entity Detection

Three example approaches for detecting multiple entities
within a smart environment are described herein. The
described example approaches are 1) a graph and rule-based
entity detector; 2) a Bayesian updating graph-based entity
detector; and 3) a particle filter-based entity detector. These
approaches may be used individually or in combination with
each other and/or with other entity detection approaches.

FIG. 2 illustrates two example graphs to support a graph
and rule-based entity detector. The first example graph 202
is defined for example smart environment 102 shown in FIG.
1. The second example graph 204 is defined for example
smart environment 116, also shown in FIG. 1.

The graph and rule-based entity detector is based on an
understanding that sensors are tripped in an expected order
as entities (e.g., individuals, pets, or any other moving
objects) move from one area to another within a smart
environment. Furthermore, it is also understood that if
multiple entities are in a smart environment, there are
typically one or more sensors located between any two
entities at various times throughout a day (e.g., two or more
entities will not always be located in the same place with
respect to the various sensors).

As illustrated in FIG. 2, a graph is defined for a smart
environment such that each vertex represents a location of a
motion detector, and each edge connects a pair of vertices if
it is possible to move from one vertex of the pair to the other
vertex of the pair without tripping another motion sensor.
Using the graph defined for a particular smart environment,
a set of logical rules is defined for identifying and tracking
entities within the smart environment. In an example imple-
mentation, the set of logical rules may be defined such that:

A new entity is defined when a motion sensor is activated
at a location with no adjacent known entities.

An existing entity is removed when it moves to a location
adjacent to a doorway or fails to generate sensor events
for an extended period of time (e.g., a configurable
timeout threshold may be set to a predetermined value
such as, for example, 300 seconds).

An existing entity is tracked as having moved to a new
location if a motion sensor is activated at or next to the
current location of the existing entity.

If more than one entity is a candidate for a detected move,
then the move is attributed to the entity that moved
most recently.

While rule-based approaches may be effective most of the
time, there may be edge scenarios that are not accounted for
in the graph. For example, if an entity moves very quickly
or very slowly from one area to another, it may be possible
for the entity to change locations without tripping all of the
adjacent motion sensors along the path. One or more of the
examples described below may be used to account for these
edge scenarios.
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As a second example, a Bayesian updating graph-based
entity detector may be implemented by replacing the graph
described above with a transition matrix that represents the
probability of an entity moving from one sensor location to
another within the smart environment. In the Bayesian
updating graph-based entity detector, beginning with some
training data, the graph probabilities are gradually updated
over time. If the sensors in a smart environment are denoted
as sy, S,, S3, - - - 5 S,,, then the probability of a particular entity
e moving to a location indicated by a tripped sensor s, is
calculated based on a likelihood that the sensor event could
have been generated by entity e based on the previous
known location of entity e.

In this example, Bayes’ Rule is used to determine which
entity moved based on a detected sensor event. Bayes’ Rule
is defined as:

Plsy | sp-1)P(e)

argmaxecg Ple | s¢) = Ploo)

where P(e) and P(s,) are constant over all choices of e. Thus,
the selection of the entity that triggered the sensor at location
k is based on the probability that an entity will move
between the two locations indicated by s, and s, ; in the
matrix. In an example implementation, these probabilities
may be estimated from a relative frequency with which an
entity moves between locations based on human-annotated
training data. In another example, these probabilities may be
initially set to a default value (e.g., a uniform distribution)
and may be incremented or decremented over time based on
use (i.e., based on actual data from a deployed system). In
such an implementation, the system may learn over time
such that the probabilities converge on the actual probabili-
ties for the specific deployment. Moreover, this data may be
leveraged for use in selecting initial default probability
values for future deployments.

In an example implementation, the Bayesian updating
graph-based entity detector maintains an additional location
in the matrix to represent “outside.” The Bayesian updating
graph-based entity detector uses this location to determine
when an entity leaves the smart environment or enters the
smart environment. Furthermore, in the example implemen-
tation, a timeout is used to remove entities that have not
caused sensor events in a long time. For example, this can
be used to handle a scenario in which multiple entities leave
the space together as a group, and the sensors are unable to
distinguish between the individual entities.

As the Bayesian updating graph-based entity detector
receives sensor data, the data is attributed to an individual
entity. Over time, a stream of sensor data for each individual
entity is generated.

A third approach that may be used in addition to or instead
of the above-described graph-based and Bayesian updating
strategies is a particle filter-based entity detector. The par-
ticle filter-based entity detector initializes a sequential
Monte Carlo method (particle filter) for each entity in the
model. Each particle filter is defined as a set of possible
hypotheses, with each hypothesis, or particle, representing a
possible current state for the target entity. Particles update
their state values each cycle of the algorithm according to an
action model that represents a distribution of the target
entity’s likely movement. Particles are weighted based on
their likelihood given available sensor event information.
During particle re-sampling, lightly-weighted particles are
removed and heavily-weighted particles are replicated.



US 9,460,350 B2

5

In an example particle filter-based entity detector imple-
mentation, the filters contain n=100 particles. Every particle
is a Cartesian pair <x,y> representing the current state
(location) of an entity. A filter centroid is calculated as a
weighted mean of all n current particles within the filter, and
an entity’s current location is given by this centroid value.
In an example algorithm implementation, the action model
is a random walk, constrained by possible movements as
indicated in the environment graph, as illustrated in FIG. 1.
For example, a movement from a sensor in one room
directly to a sensor in another room would not be allowed if
it would require that an entity move through a wall.

The weight of each particle p is updated after event k by
determining if its new location is within the viewing range
of sensor s that generated an event, according to the follow-
ing equation:

{ w1 #0.90 if p, =5, £0.60 and p, =5, £0.60
wy =

wi_1 *0.10 otherwise

As a result, particles with locations inside the range of
sensor s retain 90% of their previous weight, while other
particles retain only 10% of their previous weight. This
process draws the filter centroid toward the area covered by
Sensor s.

After the filter weights w, . . . , w, are updated, they are
normalized to prevent the weights from becoming too small
and diverging in scale over filter updates. Lastly, the filter
particles are re-sampled if the Effective Sample Size (ESS)
falls below a threshold of a=0.80%n, where the ESS is
calculated according to:

Ess =

N
=
o

Each of the three above-described example entity detec-
tion schemes provides for localization and tracking of enti-
ties within a smart environment without the need for wear-
able or carried devices or privacy-invasive cameras and
microphones. As noted above, these example entity detec-
tion schemes may be used individually or in combination
with each other and/or other entity detection schemes to
accurately track locations of multiple entities in an environ-
ment.

Entity Identification

In addition to detecting the presence and tracking the
location of one or more entities within a smart environment,
additional information can be gathered by being able to
specifically identify individual entities within the smart
environment. As discussed above, if wearable or otherwise
intrusive sensors are used, it can be fairly easy to determine
who a particular entity is. However, when using motion
sensors and other non-intrusive sensors, entity identification
can be more challenging. As a result of identifying specific
individuals, the monitored data can be used, for example, to
assess the health and well-being of specific individuals
and/or to provide contextually relevant services based on the
identified specific individuals.

In an example implementation, behaviometrics are used
to identify individual residents within a smart environment.
Rather than identifying an individual based on tagging (e.g.,
wearable sensors) or tracking them throughout a space,
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individuals are identified based on unique behaviometrics
that are generated when each resident performs unique
sequences of actions at unique times within the smart
environment. That is, different entities may perform differ-
ent tasks in a perceptively different sequence or pattern of
actions and/or at different times. These differences may be
discerned by the system and used to identify different
entities within the smart environment.

If training data is available for which each sensor event is
already labeled with a corresponding resident, then a variety
of supervised learning techniques can be used to learn a
mapping from sensor event contexts to a corresponding
entity. In this example, each entity is assigned a unique
identifier or resident ID. Two examples of such learning
techniques include a naive Bayes classifier (NBC) and a
hidden Markov model (HMM). The naive Bayes classifier
leverages Bayes’ rule (shown below) to label an event with
a resident ID, r, by using event features, D, including the
sensor identifier, the value of the sensor reading, and the
time of day. Bayes’ rule is given by:

PD| NP

argmaxyeg P(r| D) = POD)

Unlike a naive Bayes classifier, a hidden Markov model
encapsulates sequential dependencies between individual
events observed in an event sequence. In a HMM, hidden
nodes represent abstract states that cannot be directly
observed, which in this case are the resident IDs. In contrast,
observable nodes represent system states that can be directly
observed. In this case the observable nodes represent the
sensor event features, as are given to the NBC. Vertical
relationship probabilities between hidden and observed
nodes are learned from training data, as are horizontal
transition probabilities between hidden nodes. FIG. 3 shows
an example HMM for learning resident identities.

In an example implementation, a Viterbi algorithm is used
to identity a resident that corresponds to a sensor event. The
Viterbi algorithm calculates the most likely sequence of
hidden states corresponding to an observed sensor event
sequence. This sequence of hidden states provides the high-
est-likelihood resident IDs for the event sequence. HMMs
are typically robust in the presence of noisy data, but may
require more training data than the NBC to perform well
because of the increased complexity of the stochastic model.
Activity Recognition

In addition to the ability to detect, track, and identify
residents, smart environments can provide added value by
recognizing specific activities. Examples of specific activi-
ties that may be recognized include, but are not limited to,
sleeping, bathing, bed to toilet transition, grooming, prepar-
ing/eating breakfast, watching TV, cleaning the bathroom,
working at the computer, preparing/eating lunch, preparing/
eating dinner, cleaning the apartment, or studying. Activity
recognition may be implemented by comparing a pattern or
sequence of detected actions with predetermined patters or
sequences of actions corresponding to known activities.
Activity recognition provides valuable insight regarding
resident behavior, and may provide tools that will enable
older adults to remain at home, rather than entering a
supervised nursing facility. Activity recognition can also be
utilized to enable a smart environment to provide context-
aware services to the environment residents. For example,
activity recognition may be used to prompt environment
residents to take medication, feed pets, take out the trash,
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turn off appliances, or the like. In an example implementa-
tion, the activities that are identified may include well-
known ADLs (Activities of Daily Living). In another imple-
mentation, the activities that are identified may also include
additional activities that are not included in a list of ADLs,
but that occur on a frequent basis.

Various techniques for identifying and recognizing activi-
ties within a smart environment are described in additional
detail in US Patent Application Publication Number 2010/
0063774, filed Sep. 2, 2009 and published Mar. 11, 2010,
titled “Systems and Methods for Adaptive Smart Environ-
ment Automation,” the contents of which are incorporated
herein by reference.

Example Computing Device

FIG. 4 illustrates example components of a computing
device implemented to support entity detection, entity track-
ing, entity identification, and activity recognition within a
smart environment. Example computing device 110 includes
network interface(s) 402, processor(s) 404, and memory
406. Network interface(s) 402 enable computing device 110
to receive and/or send data over a network, for example, as
illustrated and described above with reference to FIG. 1.
Processor(s) 404 are configured to execute computer-read-
able instructions to perform various operations. Computer-
readable instructions that may be executed by the processor
(s) 404 are maintained in memory 406, for example, as
various software modules.

In an example implementation, memory 406 may main-
tain any combination or subset of components including, but
not limited to, operating system 408, sensor data store 410,
entity detection and tracking module 412, entity identifica-
tion module 414, and/or activity recognition module 416.
Sensor data store 410 may be implemented to store data that
is received from one or more sensors implemented in one or
more smart environments.

Entity detection and tracking module 412 may be imple-
mented to include one or more entity detectors for detecting
residents within a smart environment. In an example imple-
mentation, entity detection and tracking module 412 may
include one or more of a graph and rule-based entity detector
418, a particle filter-based entity detector 420, and/or a
Bayesian updating graph-based entity detector 422.

Entity identification module 414 may be implemented to
include one more schemes for identifying particular indi-
viduals within a smart environment. In an example imple-
mentation, entity identification module 414 includes behav-
iometrics data 424, which may include pre-defined training
data. Entity identification module 414 may also include a
naive Bayes classifier 426 and/or a hidden Markov model
428.

Example Operation

FIGS. 5 and 6 illustrate example processes for imple-
menting entity and activity recognition in multi-entity envi-
ronments, as described herein. These processes are illus-
trated as collection of blocks in logical flow graphs, which
represent sequences of operations that can be implemented
in hardware, software, or a combination thereof. In the
context of software, the blocks represent computer-execut-
able instructions stored on one or more computer storage
media that, when executed by one or more processors, cause
the processors to perform the recited operations. Note that
the order in which the processes are described is not
intended to be construed as a limitation, and any number of
the described process blocks can be combined in any order
to implement the processes, or alternate processes. Addi-
tionally, individual blocks may be deleted from the pro-
cesses without departing from the spirit and scope of the
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subject matter described herein. Furthermore, while these
processes are described with reference to the computing
device 110 described above with reference to FIG. 4, other
computer architectures may implement one or more portions
of these processes, in whole or in part.

FIG. 5 illustrates an example process 500 for identifying
a particular entity within a physical environment and track-
ing the location of the particular entity within the physical
environment according to a graph and rule-based entity
detector.

At block 502, a graph representing paths between sensors
in a physical environment is defined. For example, as
described above with reference to FIG. 2, a graph is defined
for a smart environment such that each vertex represents a
location of a sensor, and each edge connects a pair of
vertices if it is possible to move from one vertex of the pair
to the other vertex of the pair without tripping another
Sensor.

At block 504, a set of logical rules associated with the
graph is defined. As described above with reference to FIG.
2, the set of logical rules may be defined to account for
typical motion of a entity within a physical environment,
such that, for example, (1) a new entity is defined when a
motion sensor is activated at a location with no adjacent
known entities; (2) an existing entity is removed when it
moves to a location adjacent to a doorway or fails to
generate sensor events for an extended period of time; (3) an
existing entity is tracked as having moved to a new location
if a motion sensor is activated at or next to the current
location of the existing entity; and (4) if more than one entity
is a candidate for a detected move, then the move is
attributed to the entity that moved most recently.

At block 506, over time, data is received from one or more
sensors in the physical environment. As entities move about
within a physical environment equipped with a plurality of
sensors, various sensor events are triggered and data from
the sensors is received. For example, data from the sensors
may be received by computing device 110 and stored in
sensor data store 410.

At block 508, a particular entity within the physical
environment is identified based on the received sensor data
and the logical rules, and at block 510, locations of the
particular entity are tracked over time based on the received
sensor data and the logical rules. For example, graph and
rule-based entity detector 418 and entity identification mod-
ule 414 may be utilized to identify and track locations of
particular entities within the physical environment.

FIG. 6 illustrates an example process 600 for tracking the
location of a particular entity within a physical environment
according to a Bayesian updating graph-based entity detec-
tor.

At block 602, a transition matrix is defined for a physical
environment. For example, as described above with refer-
ence to FIG. 2, a Bayesian updating graph may be defined
to represent the probability of an entity moving from one
sensor location to another within the physical environment.

At block 604, data is received from a particular sensor
within the physical environment.

At block 606, a known current location of each of a
plurality of entities in the physical environment is deter-
mined. For example, based on previously received sensor
data, a current location is attributed to each entity within the
physical environment.

At block 608, based on the transition matrix, for each of
the plurality of entities in the physical environment, a
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probability that the entity moved from the known current
location to a location associated with the particular sensor is
determined.

At block 610, a particular entity of the plurality of entities
is identified as the entity that caused the sensor event based
on the determined probabilities. For example, the entity that
is assigned the highest probability of having caused the
sensor event is identified.

CONCLUSION

Smart environments may be implemented using non-
obtrusive sensors to detect, identify, and track the locations
of multiple residents. Furthermore, various algorithms may
be employed to utilize data received from the various
sensors to determine specific activities being performed by
specific individuals. This information can be used to provide
a variety of benefits including, but not limited to, allowing
older adults to age in place, monitor the health and well-
being of smart environment residents, and to provide con-
text-aware services within the smart environment.

Although the subject matter has been describe din lan-
guage specific to structural features and/or methodological
operations, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to
the specific features or operations described. Rather, the
specific features and acts are disclosed as example forms of
implementing the claims.

What is claimed is:

1. A method comprising:

defining a graph including vertices and edges, wherein

each vertex corresponds to a sensor in a physical

environment and each edge represents a direct path
between two vertices with no other vertices between
the two vertices along the path;

defining a set of logical rules for identifying and tracking

entities within the physical environment based on the

graph, wherein the rules include:

a rule for determining that an entity has moved from
one location in the physical environment to another
location within the physical environment based at
least in part on the edges of the graph; and

a rule for determining that the entity has moved from
the one location in the physical environment to the
another location within the physical environment
based at least in part on the entity moving more
recently within the physical environment than
another entity that is a candidate for a detected move
to the another location;

receiving first data from a first sensor in the physical

environment, the first sensor corresponding to a first

vertex in the graph, the first sensor including a first type
of sensor;

determining a current location of a first entity based at

least in part on the first data;

receiving second data from a second sensor in the physi-

cal environment, the second sensor corresponding to a

second vertex in the graph;

determining a current location of a second entity based at

least in part on the second data;

receiving third data from a third sensor in the physical

environment, the third sensor corresponding to a third
vertex in the graph, the third sensor including a second,
different type of sensor, wherein the third vertex is
connected to the first vertex by a first edge of the graph
and the third vertex is connected to the second vertex
by a second edge of the graph; and
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executing instructions on a computer processor to update
the current location of the first entity within the physi-
cal environment based at least in part on the first vertex
being connected to the third vertex by the first edge of
the graph and the first entity moving more recently in
the physical environment than the second entity.

2. A method as recited in claim 1, further comprising:

analyzing the first data from the first sensor and the third

data from the third sensor using behaviometrics; and
identifying, based at least in part on the analyzing, the first
entity as a specific entity.

3. A method as recited in claim 1, further comprising:

analyzing the first data from the first sensor and the third

data from the third sensor using a Viterbi algorithm;
and

identifying, based at least in part on the analyzing, the first

entity as a specific entity.

4. A method as recited in claim 1, wherein a supervised
learning technique is used to learn a mapping from sensor
event contexts to the first entity based on training data.

5. A method as recited in claim 4, wherein the supervised
learning technique comprises a naive Bayes classifier.

6. A method as recited in claim 4, wherein the supervised
learning technique comprises a hidden Markov model.

7. A method as recited in claim 1, wherein the rules further
include a rule for identifying a new entity, wherein the rule
for identifying the new entity is based at least in part on
receiving data from a sensor at a location with no known
adjacent entities.

8. A method as recited in claim 1, wherein the rules further
include a rule for determining that an entity has exited the
physical environment, wherein the rule for determining that
the entity has exited the physical environment is based, at
least in part, on the entity:

moving to a location adjacent to a doorway, or

failing to generate a sensor event for a predetermined

period of time.

9. A method as recited in claim 1, wherein the first type
of sensor includes a motion sensor and the second type of
sensor includes a light sensor.

10. A method as recited in claim 1, wherein the first type
of sensor includes a light sensor and the second type of
sensor includes a motion sensor.

11. A method comprising:

defining a transition matrix for a physical environment,

wherein:

the physical environment includes a plurality of sen-
sors; and

the transition matrix represents, for each particular
sensor of the plurality of sensors, a plurality of
probabilities, each probability being a probability of
an entity moving from a location associated with
another sensor of the plurality of sensors to a loca-
tion associated with the particular sensor;

determining a location of a first entity;

determining a location of a second entity;

receiving a sensor event from a first sensor in the physical

environment;

based at least in part on receiving the sensor event:

determining, based on the transition matrix, a first
probability that the first entity moved from the
determined location of the first entity to a location
associated with the first sensor; and

determining, based at least in part on the transition
matrix, a second probability that the second entity



US 9,460,350 B2
1

moved from the determined location of the second
entity to the location associated with the first sensor;
and

identifying the first entity within the physical environ-

ment as an entity that caused the sensor event based at 5
least in part on the first probability being greater than
the second probability.

12. A method as recited in claim 11, wherein the first
probability that the first entity moved from the determined
location of the first entity to the location associated with the 10
first sensor is based at least in part on training data that
indicates a relative frequency with which an entity moves
between the determined location of the first entity and the
location associated with the first sensor.

13. A method as recited in claim 11, further comprising 15
updating the transition matrix based at least in part on data
observed within the physical environment.
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